ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Novel Drug Target Identified for Reversal of Renal Tubular Injury

S. Sur, M. Kerwin, S. Pineda, M. Sarwal

UCSF, San Francisco, CA

Meeting: 2022 American Transplant Congress

Abstract number: 477

Keywords: Gene expression, knockout, Metabolic disease, Nephropathy

Topic: Basic Science » Basic Science » 16 - Biomarkers: -omics and Systems Biology

Session Information

Session Name: Biomarkers: -omics and Systems Biology

Session Type: Rapid Fire Oral Abstract

Date: Tuesday, June 7, 2022

Session Time: 3:30pm-5:00pm

 Presentation Time: 4:20pm-4:30pm

Location: Hynes Room 304 / 306

*Purpose: Understanding the unique susceptibility of the human kidney tubule to oxidative cell stress and to identify compounds to support reversal of renal tubular damage.

*Methods: To study the mechanisms of cell stress in renal tubular injury and identify novel drug targets for reversal, we utilized a study model of evaluating transcriptional profiles and cellular injury mechanisms in renal proximal tubule cells (RPTECs) isolated from the urine of patients with genetic confirmation of nephropathic cystinosis. Lysosomal fractionation, immunoblotting, confocal microscopy, intracellular pH, transmission electron microscopy (TEM), seahorse, and mitochondrial membrane integrity assays were performed; for additional validation, a CRISPR, cystinosin (CTNS)-/- RPTECs was generated. A new compound ATX was identified based on functional analysis against an FDA approved drug database and further evaluated for the rescue of the CTNS-/- RPTEC phenotype.

*Results: Alterations in cell stress, mitochondrial reactive oxygen species (ROS), pH, autophagic turnover, and lysosomal and mitochondrial energetics, highlighted key changes in ATP synthases and vacuolar(V)-ATPases in patient-derived and CTNS-/- RPTECs. ATP6V0A1 was significantly downregulated in RPTECS from patients with nephropathic cystinosis and CTNS-/- RPTECs. ATP6V0A1 overexpression and/or ATX treatment rescued cell stress and mitochondrial function in CTNS-/- RPTECs.

*Conclusions: Loss of cystinosin in CTNS-/- RPTEC results in decreased ATP6V0A1 expression, which changes intracellular pH, mitochondrial integrity and function. ATX can rescue these injured RPTECs through upregulating ATP6V0A1 expression and offers a potential novel therapeutic for limiting renal tubular injury. Application of ATX for murine models of renal transplant rejection, are underway to evaluate the efficacy of ATX in reversal of tubular injury and restoration of renal function.

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Sur S, Kerwin M, Pineda S, Sarwal M. Novel Drug Target Identified for Reversal of Renal Tubular Injury [abstract]. Am J Transplant. 2022; 22 (suppl 3). https://atcmeetingabstracts.com/abstract/novel-drug-target-identified-for-reversal-of-renal-tubular-injury/. Accessed May 31, 2025.

« Back to 2022 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences