ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Machine Learning to Predict Deceased Donor Liver Biopsy Results

C. Martinez, A. Placona

United Network for Organ Sharing, Richmond, VA

Meeting: 2020 American Transplant Congress

Abstract number: A-124

Keywords: Area-under-curve (AUC), Biopsy, Liver, Prediction models

Session Information

Session Name: Poster Session A: Liver: MELD, Allocation and Donor Issues (DCD/ECD)

Session Type: Poster Session

Date: Saturday, May 30, 2020

Session Time: 3:15pm-4:00pm

 Presentation Time: 3:30pm-4:00pm

Location: Virtual

*Purpose: Biopsies are often cited as a key factor on whether to accept a deceased liver offer. Motivated by the influential role of biopsy findings on liver offer decisions, we develop and evaluate a machine learning model to predict biopsy results given only clinical and lab data available from the OPTN at the time of match.

*Methods: We collected OPTN data at the time of match for deceased donors since 1999 with recorded liver macrosteatosis assessments (N = 23017 donors). Collected data include mixed continuous/discrete demographic variables (e.g. age and ethnicity), discrete medical history indicators (e.g. history of hypertension), and continuous lab measurements (e.g. serum creatinine levels). These data points were used as features for an XGBoost machine learning model trained to predict macrosteatosis category (“0-5%”, “6-30%”, or “>30%” macrosteatosis). The predictive model was trained using 90% of collected liver donors; the remaining 10% were reserved for model assessment via ROC analysis. We calculated ROC curves (Figure 1a) in a one-versus-rest manner (e.g. 0-5% macrosteatosis versus all other categories).

*Results: Markedly different performance was observed across macrosteatosis categories. The model performs relatively well at rank-ordering on the extreme ends (0-5% or >30%; AUC 0.72 and 0.73) but poorly for the intermediate 6-30% category (AUC 0.64). Among the top features, as determined from XGBoost feature importances, were age and BMI followed by a number of features derived from lab measurements (Figure 1b).

*Conclusions: Distinct differences in performance across macrosteatosis categories indicate challenges for biopsy prediction models. As the model was trained on assessments from individual biopsy readers, these challenges may reflect subjective biopsy interpretations where multiple pathologists can reach different conclusions from a single biopsy. Intuitively, one could expect better agreement at the extremes where severity of the condition is obviously very low or very high with more uncertainty toward the middle as observed in our model. Further investigation is needed to assess confidence of biopsy results stratified by severity and the impact on predictive models derived from those results.

 border=

  • Tweet
  • Email
  • Print

To cite this abstract in AMA style:

Martinez C, Placona A. Machine Learning to Predict Deceased Donor Liver Biopsy Results [abstract]. Am J Transplant. 2020; 20 (suppl 3). https://atcmeetingabstracts.com/abstract/machine-learning-to-predict-deceased-donor-liver-biopsy-results/. Accessed May 10, 2025.

« Back to 2020 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences