ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Multidimensional System to Dynamically Predict Graft Survival after Kidney Transplantation

M. Raynaud1, O. Aubert1, S. Jordan2, M. Stegall3, J. Friedewald4, D. Glotz1, C. Legendre1, D. Segev5, C. Lefaucheur1, A. Loupy, On behalf of the study NCT034740031

1Paris Transplant Group, Paris, France, 2Cedars Sinai, Los Angeles, CA, 3Mayo Clinic, Rochester, MN, 4Northwestern University, Chicago, IL, 5Johns Hopkins, Baltimore, MD

Meeting: 2020 American Transplant Congress

Abstract number: 94

Keywords: Graft survival, Prediction models, Prognosis, Risk factors

Session Information

Session Name: Biomarkers, Immune Assessment and Clinical Outcomes I

Session Type: Oral Abstract Session

Date: Saturday, May 30, 2020

Session Time: 3:15pm-4:45pm

 Presentation Time: 4:15pm-4:27pm

Location: Virtual

*Purpose: Current prediction systems of kidney-graft loss do not integrate the dynamic effect of parameters assessed over the time course of kidney recipients. Recent dynamic approaches could enhance risk stratification in kidney recipients by constructing a predictive system that could continuously be updated over time thereby improving patient care and treatment management.

*Methods: International population-based study involving 20 transplant centers and 6 randomized controlled trials (RCT). Patients were divided into a derivation cohort consisting of 4 French centers with patients transplanted between 2000 and 2014 and validation cohorts from 7 centers in Europe, 5 in the US, 4 in South-America, and 6 RCTs with patients transplanted between 2000 and 2016. Patients underwent assessment of clinical, functional, histological and immunological parameters, together with prospective, protocol-based estimated glomerular filtration rate (eGFR) and proteinuria repeated measures after transplantation. With the use of joint modelling, the iBox score previously published by our team (BMJ 2019) was combined to eGFR and proteinuria repeated measurements to derive a kidney-graft survival dynamic prediction system.

*Results: A total of 12,683 patients were included (3,774 patients in the derivation cohort and 8,909 patients in the validation cohorts). After a median follow-up of 7.42 years (IQR 5.21-10.07) post transplantation, 1,408 allograft failures occurred. A total of 416,510 eGFR and proteinuria repeated measures were assessed. With multivariable joint modeling analysis, the iBox score and the eGFR and proteinuria repeated measurements were independently associated with graft loss. Based on the final multivariable model, we derived a dynamic prediction model that demonstrated accurate calibration and very high discrimination in the derivation cohort (AUC= 0.857). The performance of the model was confirmed in the six validation cohorts from Europe (AUC= 0.833), the USA (AUC= 0.897), South-America (AUC= 0.891), and the RCTs (AUC= 0.922). We also validated the dynamic model in a large series of clinical scenarios and subpopulations.

*Conclusions: We developed for the first time an integrative dynamic system that accurately predicts the risk of long-term allograft failure and outperforms any current prediction models in kidney transplantation based on classical statistical approaches. This dynamic system shows generalisability across centers and countries worldwide. This original dynamic approach may help adjusting prognostic judgements of clinicians in everyday practice and improve the design of future clinical trials.

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Raynaud M, Aubert O, Jordan S, Stegall M, Friedewald J, Glotz D, Legendre C, Segev D, Lefaucheur C, Loupy A. Multidimensional System to Dynamically Predict Graft Survival after Kidney Transplantation [abstract]. Am J Transplant. 2020; 20 (suppl 3). https://atcmeetingabstracts.com/abstract/multidimensional-system-to-dynamically-predict-graft-survival-after-kidney-transplantation/. Accessed May 16, 2025.

« Back to 2020 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences