ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Mitochondrial Dysfunction and Metabolic Reprogramming: Critical Features of Cyclosporine A Nephrotoxicity

A. A. Zmijewska, G. Benavides, V. Darley-Usmar, J. W. Zmijewski, R. B. Mannon

University of Alabama at Birmingham, Birmingham, AL

Meeting: 2019 American Transplant Congress

Abstract number: 261

Keywords: Calcineurin, Immunosuppression, Kidney, Toxocity

Session Information

Session Name: Concurrent Session: Immunosuppression Preclinical Studies

Session Type: Concurrent Session

Date: Monday, June 3, 2019

Session Time: 2:30pm-4:00pm

 Presentation Time: 2:42pm-2:54pm

Location: Room 309

*Purpose: Calcineurin inhibitors (CNIs) are potent immunosuppressants but over time contribute to allograft fibrosis. Clinical efforts to minimize or avoid CNI have not been uniformly successful. Mitigating the nephrotoxicity of CNI is a clinically relevant strategy to facilitate their chronic use. Herein, we investigated a novel link between CNI nephrotoxicity and impaired mitochondrial bioenergetic homeostasis and metabolic reprogramming as a potential strategy to ameliorate CNI renal injury.

*Methods: In addition to proximal tubular epithelial cells (PTECs) for in vitro studies, we utilized a mouse model of CsA acute nephrotoxicity. Mice received a 0.1% NaCl diet for 7 days, followed by CsA 90 mg/kg IP daily for 1 week. Mitochondrial function and structure were determined using Seahorse™ analyzer and western blot analysis of major components in mitochondrial electron chain complexes. Mouse kidney homogenates and PTECs were also analyzed for expression of mTOR, β-catenin, AMPK, ERK1/2 and PI3K/Akt signaling.

*Results: Exposure of PTECs to CsA resulted in dose dependent decrease in mitochondrial oxygen consumption rates (OCR). Notably, significant decreases of OCR basal, maximal, ATP-linked, and mitochondrial reserve capacity were elicited by non-apoptotic concentrations of CsA (Figure 1). The CsA-mediated effects were associated with significant decrease of NDUFB8 (complex I), FeS comp I (complex II), and subunit I of complex IV (Figure 2). Such loss of mitochondrial indices was accompanied by bioenergetic reprogramming of PTECs. While oxidative phosphorylation was diminished, we observed an increase of extracellular acidification rates (ECAR), indicative of enhanced glycolysis. Metabolic reprogramming and remodeling was accompanied by significant activation of mTOR, along with activation of anabolic and pro-remodeling signaling related to MAPK ERK1/2 and PI3K/Akt phosphorylation and accumulation of β-catenin. Importantly, similar alterations, including mitochondrial, bioenergetic remodeling and epithelial injury, were observed in a mice model of CsA-mediated nephrotoxicity.

*Conclusions: Our results indicate that acute exposure of PTECs to CsA results in a loss of oxidative phosphorylation, with bioenergetic reprogramming to glycolytic metabolism as an initial adaptive (pro-survival) response. However, these responses culminate in metabolic and bioenergetic maladaptation and renal epithelial cell dysfunction. Disruption and return to cellular homeostasis may be one strategy to ameliorate CsA nephrotoxicity.

 border=

  • Tweet
  • Email
  • Print

To cite this abstract in AMA style:

Zmijewska AA, Benavides G, Darley-Usmar V, Zmijewski JW, Mannon RB. Mitochondrial Dysfunction and Metabolic Reprogramming: Critical Features of Cyclosporine A Nephrotoxicity [abstract]. Am J Transplant. 2019; 19 (suppl 3). https://atcmeetingabstracts.com/abstract/mitochondrial-dysfunction-and-metabolic-reprogramming-critical-features-of-cyclosporine-a-nephrotoxicity/. Accessed May 11, 2025.

« Back to 2019 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences