ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Glycogen Synthase Kinase 3β Inhibition Promotes Human iTreg Differentiation and Suppressive Function

Y. Xia, H. Zhuo, Y. Lu, L. Deng, R. Jiang, L. Zhang, L. Pu, X. Wang.

The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Meeting: 2015 American Transplant Congress

Abstract number: A258

Keywords: Immunosuppression, Tolerance

Session Information

Session Name: Poster Session A: Preclinical Immunosuppression and Tolerance

Session Type: Poster Session

Date: Saturday, May 2, 2015

Session Time: 5:30pm-7:30pm

 Presentation Time: 5:30pm-7:30pm

Location: Exhibit Hall E

Induced regulatory T cells (iTregs) are essential to maintain immunological tolerance, immune homeostasis, and prevention of autoimmunity. Some studies suggest that glycogen synthase kinase 3β (GSK3β) is involved in the mouse iTreg differentiation; however, whether GSK3β inhibits or enhances iTreg differentiation is still a matter of controversy. To address this issue, we have utilized human naïve CD4+ T cells and investigated whether GSK3 activity changes during iTreg differentiation and whether altering GSK3 activity influences the development of iTregs and its suppressive function. As a constitutively activated kinase, during iTreg differentiation GSK3β became quickly deactivated (phosphorylated at serine 9), which is dependent on MAPK pathway rather than PI3-kinase/Akt pathway. Our results indicated that inhibition of GSK3β by specific inhibitors, SB216763 or TDZD-8, promoted the differentiation of iTreg and increased their suppressive activity. In contrast, overexpression of GSK3β significantly inhibited iTreg differentiation, whereas transfection of GSK3β S9A did not. Furthermore, GSK3β inhibition enhanced iTreg differentiation through the TGF-β/Smad3 pathway. Taken together, this study demonstrates that inhibition of GSK3β enhances human iTreg differentiation and its suppressive activity, and provides a rationale to target GSK3β as a novel immunotherapeutic strategy.

  • Tweet
  • Email
  • Print

To cite this abstract in AMA style:

Xia Y, Zhuo H, Lu Y, Deng L, Jiang R, Zhang L, Pu L, Wang X. Glycogen Synthase Kinase 3β Inhibition Promotes Human iTreg Differentiation and Suppressive Function [abstract]. Am J Transplant. 2015; 15 (suppl 3). https://atcmeetingabstracts.com/abstract/glycogen-synthase-kinase-3-inhibition-promotes-human-itreg-differentiation-and-suppressive-function/. Accessed May 11, 2025.

« Back to 2015 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences