ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

RNA Splicing and Lineage Progression: Identification of an Integrated Splicing Pattern in Endodermal Lineage Progression

J. Fair1, N. Liu1, S. G. Widen2, W. S. Fagg1

1Surgery, University of Texas Medical Branch, Galveston, TX, 2Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX

Meeting: 2019 American Transplant Congress

Abstract number: D38

Keywords: Gene expression, Genomic markers, Stem cells, Transcription factors

Session Information

Session Name: Poster Session D: Stem Cell, Cellular Therapies and Regenerative Medicine

Session Type: Poster Session

Date: Tuesday, June 4, 2019

Session Time: 6:00pm-7:00pm

 Presentation Time: 6:00pm-7:00pm

Location: Hall C & D

*Purpose: Epigenetic states such as histone modifications and DNA methylation that influence transcription are well-characterized regulators of stem cell pluripotency and differentiation to specific lineages. Despite the importance of alternative splicing (the process of intron removal and exon ligation in which an RNA-binding protein (RBP; trans-acting factor) directly interacts with a cis-element in the RNA molecule to influence more than one outcome on the mature mRNA, and thus protein, product) in regulating disease, pluripotency, and tissue-specific gene expression, how this additional epigenetic form of regulation is involved during early cell fate decisions is not known. Here we identify specific splicing patterns do exist during differentiation and they can be useful biomarkers for lineage-specificity.

*Methods: We identify lineage-specific splicing patterns by comparing splicing changes (using VASTtools to analyze high throughput RNA sequencing (RNA-seq) data) between undifferentiated human embryonic stem cells (hESCs), 3 different samples from 3 day differentiated hESCs (spontaneous, endoderm, and cardiac mesoderm), and 2 different samples from 7 day differentiated hESCs (spontaneous and hepatic progenitors). We have validated a number of these changes using RT-PCR.

*Results: We find evidence of lineage-specific splicing patterns at the global level. One particularly interesting example is a previously reported developmentally-regulated alternative exon in the FOXP1 transcription factor that produces protein isoforms with opposing functions. When exon 18a is included FOXP1 promotes ESC differentiation, but with it is skipped promotes self-renewal (Gabut et al 2011). We find here FOXP1 splicing actually shows lineage-specificity in partial skipping in day 3 endoderm and spontaneously differentiated cells, but is almost completely included in day 3 cardiac mesoderm (see figure).

*Conclusions: As evidenced by our RNA-seq datasets and individual examples a distinctive splicing pattern is associated with not only stem cell differentiation but also lineage progression. These patterns can serve as exon-specific biomarkers for a high-resolution, systems-level analysis of specific early lineages. Further studies are warranted to determine if these are actual drivers of cell fate and lineage progression along the way to becoming hepatocytes or other mature cell types.

 border=

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Fair J, Liu N, Widen SG, Fagg WS. RNA Splicing and Lineage Progression: Identification of an Integrated Splicing Pattern in Endodermal Lineage Progression [abstract]. Am J Transplant. 2019; 19 (suppl 3). https://atcmeetingabstracts.com/abstract/rna-splicing-and-lineage-progression-identification-of-an-integrated-splicing-pattern-in-endodermal-lineage-progression/. Accessed May 18, 2025.

« Back to 2019 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences