ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Mitochondrial Quality Control through PGC-1α in Syngenic Mouse Heart Transplant

A. Cherry,1 K. Porter,1 H. Suliman,1 J. Wang,2 M. Mulvihill,2 A. Kirk.2

1Anesthesiology, Duke University, Durham, NC
2Surgery, Duke University, Durham, NC.

Meeting: 2018 American Transplant Congress

Abstract number: D251

Keywords: Graft function, Heart, knockout, Mice, Transcription factors

Session Information

Session Name: Poster Session D: Stem Cell, Cellular Therapies and Regenerative Medicine

Session Type: Poster Sessoin

Date: Tuesday, June 5, 2018

Session Time: 6:00pm-7:00pm

 Presentation Time: 6:00pm-7:00pm

Location: Hall 4EF

Intro: Impaired mitochondrial function plays a role in graft dysfunction after transplant, and recovery is facilitated by mitochondrial quality control (MQC). Two key elements of MQC are mitochondrial biogenesis and mitophagy (degradation of dysfunctional mitochondria). The peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) co-activator regulates mitochondrial biogenesis, and may also play a role in mitophagy. We hypothesized that, in syngenic heterotopic mouse heart transplant (HMHT), PGC-1α knockout would decrease both mitochondrial biogenesis and mitophagy, increasing tissue damage and graft dysfunction.

Methods: With Institutional Animal Use approval, syngenic HMHT was with donor hearts from either BL/6 wild type (WT) or PGC-1α heterozygote (+/-) mice. Recipients were littermate BL/6 WT; non-surgical hearts were controls (0h). Functional assessment was by graft palpation (0-4). 24h and 7d after HMHT, donor WT or PGC-1α+/- hearts were fixed for fluorescence immunohistochemistry or flash frozen for myeloperoxidase (MPO) assay and western blot(n=3/group). Protein markers of mitophagy were quantified (PINK1, parkin, and LC3-II and I]). TUNEL allowed % apoptotic nuclei quantification. Fluorescence intensity (FI) was quantified for citrate synthase (CS), a surrogate for mitochondrial density. ANOVA with post-hoc Tukey-Kramer HSD was used for PGC-1α+/- vs. WT hearts at 0h, 24h, and 7d (p<0.05 significant).

Results: MPO and TUNEL assays showed increased oxidative stress and cell death at 7d in PGC-1α+/- (vs. WT, MPO: 0.15 vs. 0.11 OD/min/mg @24h, 0.10 vs. 0.05 @7d, p=NS; TUNEL: p=NS @24h; p=0.04 @7d). CS FI decreased in both PGC-1α+/- and WT, but was lower in PGC-1α+/- at both 24h and 7d (vs. WT, p=0.02 @24h; p=0.03 @7d). PINK1 decreased after HMHT, but was lower at 24h for PGC-1α+/- (vs. WT, p=0.005). Parkin decreased in WT, but was lower for PGC-1α+/- (vs. WT, p<0.001 @0h, 24h, 7d). The LC3 II/I ratio and graft function palpation were similar for PGC-1α+/- vs. WT (p=NS).

Conclusion: Syngenic HMHT imparts oxidative stress and results in decreased mitochondrial density, due to lack of physiologic afterload; this is pronounced in PGC-1α+/-, consistent with decreased mitochondrial biogenesis. Mitophagy markers are also decreased in PGC-1α+/-, suggesting an additional role in MQC. Identification of post-translational modifications and subcellular locations will clarify the role of PGC-1α in mitophagy.

CITATION INFORMATION: Cherry A., Porter K., Suliman H., Wang J., Mulvihill M., Kirk A. Mitochondrial Quality Control through PGC-1α in Syngenic Mouse Heart Transplant Am J Transplant. 2017;17 (suppl 3).

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Cherry A, Porter K, Suliman H, Wang J, Mulvihill M, Kirk A. Mitochondrial Quality Control through PGC-1α in Syngenic Mouse Heart Transplant [abstract]. https://atcmeetingabstracts.com/abstract/mitochondrial-quality-control-through-pgc-1-in-syngenic-mouse-heart-transplant/. Accessed May 16, 2025.

« Back to 2018 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences