ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Short-Term Outcome Prediction Model in Deceased Donor Kidney Transplant Recipients

K. Archer,1 Y. Zhang,1 S. Bontha,2 E. Akalin,3 L. Gallon,4 D. Maluf,2 V. Mas.2

1OSU, Columbus
2UVA, Charlottesville
3Montefiore, New York
4NWU, Chicago.

Meeting: 2018 American Transplant Congress

Abstract number: B101

Keywords: Donors, Genomic markers, Kidney transplantation, marginal, Outcome

Session Information

Session Name: Poster Session B: Kidney Deceased Donor Allocation

Session Type: Poster Session

Date: Sunday, June 3, 2018

Session Time: 6:00pm-7:00pm

 Presentation Time: 6:00pm-7:00pm

Location: Hall 4EF

Background: Lack of accurate outcome prediction models may be a reason for the increase in organ discard rate that further burdens the growing kidney transplant (KT) wait list. Herein, we applied machine learning methods to identify molecular features from deceased donor (DD) pre-implant (PI) biopsies for more accurately predicting short-term KT outcome. This is a first step towards developing a composite scoring system.

Methods: Gene expression was done in 189 PI biopsies from unique KT donors and the significance of association and prediction accuracy of KDRI with short-term outcome, defined as glomerular filtration rate (eGFR) at one month categorized as high (>40) vs. low (<=40), was estimated. A penalized logistic regression model was fitted for predicting high versus low eGFR with KDRI included in the model. Machine learning was then incorporated in data analysis to develop a model with improved predictive performance.

Results: KDRI was significantly associated with short-term outcome (P=0.029) in the 189 DD KT recipients. The area under ROC curve was 0.626 for prediction of short-term outcome. However, when fitting a penalized logistic regression model predicting high vs low eGFR that included KDRI in the model, the addition of expression levels from PI biopsies for 12 probe sets yielded an AUC of 0.811 (Sensitivity 0.74; Specificity 0.75). The issue of severe imbalance between the two classes to be predicted (50 (26.2%) subjects with low eGFR vs 139 (72.8%) subjects with high GFR at one month post-KT) that plagues the development of more accurate prediction model was overcome by employing oversampling of the minority class combined with the machine learning method random forests. We determined the optimal tuning parameter for our random forest by performing 10-fold cross-validation. Then, we fit our random forest model to predict high vs. low GFR at one month. Using observations not included in the fitting procedure (out-of-bag observations), our misclassification rate was only 6.12% (Sensitivity 0.935; Specificity 0.942). Interestingly, among the 19380 possible predictors, KDRI ranked 19239th with respect to variable importance defined as the mean decrease in accuracy.

Conclusions: A panel of PI molecular markers were identified that together with clinical parameters predict short-term outcomes more accurately than scoring systems currently in place.

CITATION INFORMATION: Archer K., Zhang Y., Bontha S., Akalin E., Gallon L., Maluf D., Mas V. Short-Term Outcome Prediction Model in Deceased Donor Kidney Transplant Recipients Am J Transplant. 2017;17 (suppl 3).

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Archer K, Zhang Y, Bontha S, Akalin E, Gallon L, Maluf D, Mas V. Short-Term Outcome Prediction Model in Deceased Donor Kidney Transplant Recipients [abstract]. https://atcmeetingabstracts.com/abstract/short-term-outcome-prediction-model-in-deceased-donor-kidney-transplant-recipients/. Accessed May 16, 2025.

« Back to 2018 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences