ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Kidney Transplant Rejection is Associated with Robust and Prolonged Bioenergetic Reprogramming and Metabolic Maladaptation

A. Zmijewska, J. Zmijewski, J. Chen, R. Mannon.

Medicine, University of Alabama at Birmingham, Birmingham, AL.

Meeting: 2018 American Transplant Congress

Abstract number: 96

Keywords: Inflammation, Kidney transplantation, Metabolic complications, Rejection

Session Information

Session Name: Concurrent Session: Acute Rejection

Session Type: Concurrent Session

Date: Sunday, June 3, 2018

Session Time: 4:30pm-6:00pm

 Presentation Time: 4:30pm-4:42pm

Location: Room 6A

Introduction: Metabolic plasticity and mitochondrial bioenergetic homeostasis are altered due to a organ ischemia. However, the impact of the alloimmune response on the allograft is not known. The goal of our studies is to establish if bioenergetic dysfunction is linked to metabolic reprogramming of kidney during rejection.

Methods: Kidneys from C57BL/6 were transplanted into MHC-incompatible Balb/c mice (allograft). Kidneys from C57BL/6 were transplanted into their litter-mates as isograft controls. No immunosuppression was given as these grafts have prolonged survival and ongoing cellular rejection. Major mitochondrial electron transport chain (ETC) complexes and metabolic regulators, including AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR) and Hypoxia-inducible factor 1-alpha (HIF-1α), were determined in whole kidney lysates. Western blot analysis also includes regulatory components of mitochondrial biogenesis and tissue remodeling.

Results: Significant loss of mitochondrial ETC complexes was observed in kidney allografts, compared to isografts in the first week post- transplant. Such loss of mitochondrial complexes was accompanied by activation of several metabolic switches involved in reprogramming toward glycolytic metabolism, as evidenced by increased activity of mTOR and HIF-1α in allografts versus isografts. Notably, AMPK activation in allografts suggests that a subset of cells experienced significant and prolonged bioenergetic stress. Importantly, while reduced amounts of mitochondrial ETC complexes persisted in allografts for several weeks, isografts show a remarkable recovery of ETC complexes, similar to the levels observed in naïve kidneys.

Conclusions: Our studies indicate that loss of bioenergetic homeostasis is related to mitochondrial dysfunction and accompanied with metabolic reprogramming in rejecting allografts. Importantly, isograft shows time-dependent recovery of mitochondrial components, dissipation of mTOR and HIF-1α, normalization bioenergetic sensor and metabolic regulator AMPK. Targeting this pathway may ameliorate the kidney injury associated with rejection.

CITATION INFORMATION: Zmijewska A., Zmijewski J., Chen J., Mannon R. Kidney Transplant Rejection is Associated with Robust and Prolonged Bioenergetic Reprogramming and Metabolic Maladaptation Am J Transplant. 2017;17 (suppl 3).

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Zmijewska A, Zmijewski J, Chen J, Mannon R. Kidney Transplant Rejection is Associated with Robust and Prolonged Bioenergetic Reprogramming and Metabolic Maladaptation [abstract]. https://atcmeetingabstracts.com/abstract/kidney-transplant-rejection-is-associated-with-robust-and-prolonged-bioenergetic-reprogramming-and-metabolic-maladaptation/. Accessed May 16, 2025.

« Back to 2018 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences