ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Crispr-Based Diagnostics for Rejection and Opportunistic Infection Detection in Kidney Transplantation

I. T. Lape1, M. M. Kaminski2, E. Akalin3, J. Collins2, L. W. Riella1

1Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, 2Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 3Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY

Meeting: 2020 American Transplant Congress

Abstract number: 307

Keywords: Cytomeglovirus, Kidney transplantation, Rejection

Session Information

Session Name: Biomarkers, Immune Assessment and Clinical Outcomes III

Session Type: Oral Abstract Session

Date: Saturday, May 30, 2020

Session Time: 3:15pm-4:45pm

 Presentation Time: 3:27pm-3:39pm

Location: Virtual

*Purpose: There is an unmet need in transplantation to identify allograft injury non-invasively. More than 50% of patients with kidney transplants lose their grafts within 10 years. If we better monitor patients for rejection and opportunistic infections, which are the main causes of allograft loss, we could improve transplant survival. Using CRISPR/Cas13 technology, we developed a point-of-care assay that is inexpensive, fast and sensitive to detect the biomarker CXCL9 mRNA, BK virus (BKV) and cytomegalovirus (CMV), allowing better monitoring of T-cell mediated rejection (TCMR) and opportunistic infections after transplantation.

*Methods: We adapted and optimized a CRISPR-Cas13 platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) towards detecting BKV, CMV, and CXCL9 mRNA. We tested for BKV and CMV infection on patient samples (n=118) processed with HUDSON protocol, which avoids the need for time-consuming, column-based sample preparations. For the monitoring of BKV infection, we tested in urine and plasma samples of infected patients and controls. For CMV detection, we tested plasma samples of infected patients and controls. For rejection monitoring, we tested CXCL9 mRNA with the SHERLOCK protocol on urine samples of biopsy-proven kidney rejection and compared to non-rejection/stable kidney allografts.

*Results: For both CMV and BK virus detection, we had 100% sensitivity and 100% specificity compared with the gold standard qPCR (Fig. A). Next, we employed a lateral-flow dipstick as easy-to-read visual output for the biomarker targets (Fig. B). On rejection monitoring, we observed higher CXCL9 levels in the rejection group, compared to the stable transplant patients (p<0.0001). We confirmed CXCL9 upregulation in rejection samples with qPCR as well as ELISA. We also tested for the biomarker in prospective samples of patients experiencing TCMR rejection and compared them with creatinine levels (representative case, Fig. C). We successfully detected increasing CXCL9 levels on the rejection period, as confirmed by biopsy.

*Conclusions: The monitoring of CXCL9 in urine using CRISPR/cas13 constitutes a promising technique for the detection of rejection and opportunistic infections non-invasively. Moreover, persistent elevation of CXCL9 after treatment can also be an indicator of resistant rejection, serving as a marker of treatment response. This low-cost diagnostic assay may allow patients to better monitor for rejection and opportunistic infections and improve transplant outcomes.

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Lape IT, Kaminski MM, Akalin E, Collins J, Riella LW. Crispr-Based Diagnostics for Rejection and Opportunistic Infection Detection in Kidney Transplantation [abstract]. Am J Transplant. 2020; 20 (suppl 3). https://atcmeetingabstracts.com/abstract/crispr-based-diagnostics-for-rejection-and-opportunistic-infection-detection-in-kidney-transplantation/. Accessed May 16, 2025.

« Back to 2020 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences