ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

One-Year Graft Loss Risk in Kidney Transplants – A Big Data Approach.

T. Srinivas, D. Taber, J. Zhang, Z. Su, J. Marsden, A. Tripathi, W. Moran, P. Mauldin.

MUSC, Charleston, SC
IBM Corp., Armonk.

Meeting: 2016 American Transplant Congress

Abstract number: B47

Keywords: Graft survival, Outcome, Prediction models, Resource utilization

Session Information

Session Name: Poster Session B: Disparities in Access and Outcomes

Session Type: Poster Session

Date: Sunday, June 12, 2016

Session Time: 6:00pm-7:00pm

 Presentation Time: 6:00pm-7:00pm

Location: Halls C&D

Background Predictive models using national data are limited by lack of evolving patient level data. A Big Data approach using both static and dynamic variables may improve accuracy of stratifying patients by graft loss (GL) risk.

Methods: In a quality improvement project, we developed a predictive risk model using baseline and follow up data (structured and unstructured; up to 90-days post-tx). We included adult solitary kidney transplant recipients transplanted from 2007-15. We excluded: 1) GL in first 7 days post-tx, or 2) did not have a GL recorded nor any other data during the first year post-transplant. Structured data were directly extracted from electronic medical records (EHR, UNOS, Txp database (Velos)) and Natural Language Processing (IBM Watson) was applied to unstructured text to extract Banff scores and select vitals. IBM SPSS Modeler/ Essentials for R were used for analysis. Backward Selection Process was used at the 20% level for variable selection, and statistical significance was determined at the 5% level.

Results:Of 1,175 patients 3.8% experienced 1-yr GL. In addition to SRTR variables, we analyzed dynamic evolution of biologically relevant variables such as blood pressure, hemoglobin and eGFR during the first 90-days post-transplant; 40% of patients were female, 53% African American, the average age being 52 years. Variables significantly associated with increased 1-yr GL included KDRI, blood type B, smoker at time of transplant, pulse pressure standard deviation, and cardiac /vascular events

. Variables significantly associated with lower one-year GL included waiting time, finishing high school, cerebrovascular disease, hemoglobin slope from day 7-90 , eGFR standard deviation from day 0-90 and days from transplant to first maximum eGFR. The predictive model AUC was 0.88 (95% CI: 0.82-0.95), suggesting strong model accuracy

.

Conclusion: A Big Data solution to analyzing EHR data accurately predicts 1 year graft loss risk and captures dynamic evolution of biologic and socioeconomic mediators of risk. This approach is automatable and EHR deployable on a daily basis in the clinic to accurately identify patients at high risk of early graft loss.

CITATION INFORMATION: Srinivas T, Taber D, Zhang J, Su Z, Marsden J, Tripathi A, Moran W, Mauldin P. One-Year Graft Loss Risk in Kidney Transplants – A Big Data Approach. Am J Transplant. 2016;16 (suppl 3).

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Srinivas T, Taber D, Zhang J, Su Z, Marsden J, Tripathi A, Moran W, Mauldin P. One-Year Graft Loss Risk in Kidney Transplants – A Big Data Approach. [abstract]. Am J Transplant. 2016; 16 (suppl 3). https://atcmeetingabstracts.com/abstract/one-year-graft-loss-risk-in-kidney-transplants-a-big-data-approach/. Accessed May 21, 2025.

« Back to 2016 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences