ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Unique Podocyte and Multiplex Single-Cell RNASeq Analysis of Paired Sera and Bone Marrow Samples Suggest a Role for Perturbed Hematopoeitic Progenitors in FSGS Recurrence

P. Rashmi, T. Sigdel, A. Alica Da Silva, R. Paul, D. Galligan, J. Wolfe, F. Vincenti, M. Sarwal

University of California San Francisco, San Francisco, CA

Meeting: 2020 American Transplant Congress

Abstract number: B-368

Keywords: Bone marrow, Proteinuria

Session Information

Session Name: Poster Session B: Antigen Presentation / Allorecognition / Dendritic Cells

Session Type: Poster Session

Date: Saturday, May 30, 2020

Session Time: 3:15pm-4:00pm

 Presentation Time: 3:30pm-4:00pm

Location: Virtual

*Purpose: Focal Segmental Glomerulosclerosis (FSGS) is the most common cause of nephrotic syndrome, can lead to ESRD, and carries a high burden of recurrence risk an accelerated graft loss after transplant, with associative circulating factors with suggested pathogenesis. We hypothesized that FSGS may be a disease caused by dysregulated hematopoietic stem cells that result in the production and release of circulating factors which result in podocytopathy.

*Methods: Iliac crest bone marrow and sera was obtained with informed consent from patients with primary FSGS as their cause of ESRD with either lack of recurrence (nrFSGS; n=4), loss of a first renal allograft due to biopsy confirmed FSGS recurrence (rFSGS; n=4), ESRD due to causes other than FSGS (nFSGS; n=2), or without ESRD as healthy controls (HC; n=2). Bone marrow was sorted into either unfractionated bone marrow cells (BMC) or into flow sorted mononuclear cells (BM-MNC). In vitro culture of BMC allowed for characterization of specific soluble factors which were subsequently tested on a custom immortalized human podocyte cell line and for their ability to cause podocyte injury. Multiplex single-cell RNASeq (Mux-Seq) of BMC and BM-MNC was conducted on all samples with SNP based deconvolution of individual samples, using NovaSeq. Data analysis for podocyte injury was done by confocal microscopy and actin depolarization MFI and for Mux-Seq by SEURAT, with scRNASeq data visualization by tSNE/uMAPs.

*Results: Sera from rFSGS but not nrFSGS patients causes actin cytoskeleton rearrangement and loss of stress fibers as a hallmark of podocyte injury, confirming the presence of one/more systemic soluble podocytopathic factors. Treatment with conditioned media from rFSGS BMC culture but not from healthy control BMCs also resulted in podocyte damage. Mux-Seq of BMC and BM-MNC revealed at least18 distinct cell populations, with subsets of unique MNC populations in rFSGS, nrFSGS, nFSGS and healthy BM, with differential expression of specific proteins mapped to previous autoantibodies studied in rFSGS, inclusive of PLAUR and CD40.

*Conclusions: Podocyte injury in rFSGS is supported by one or more circulating autoantibodies or proteins, but further work is needed to dissect causation from association. Knock out animal studies are underway to address this. Mux-Seq provides tantalizing results on unique MNC subsets in rFSGS with variations in specific proteins relating to the uPAR/CD40 pathway that are currently undergoing further investigation.

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

To cite this abstract in AMA style:

Rashmi P, Sigdel T, Silva AAlicaDa, Paul R, Galligan D, Wolfe J, Vincenti F, Sarwal M. Unique Podocyte and Multiplex Single-Cell RNASeq Analysis of Paired Sera and Bone Marrow Samples Suggest a Role for Perturbed Hematopoeitic Progenitors in FSGS Recurrence [abstract]. Am J Transplant. 2020; 20 (suppl 3). https://atcmeetingabstracts.com/abstract/unique-podocyte-and-multiplex-single-cell-rnaseq-analysis-of-paired-sera-and-bone-marrow-samples-suggest-a-role-for-perturbed-hematopoeitic-progenitors-in-fsgs-recurrence/. Accessed June 17, 2025.

« Back to 2020 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences