ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

Three-Year Graft Loss Risk in Kidney Transplants: Dynamic Patient Level Data Improve Predictive Efficacy.

T. Srinivas, J. Zhang, Z. Su, D. Taber, J. Marsden, K. Reilly, D. Northrup, J. Long, L. Lenert, W. Moran, P. Mauldin.

MUSC, Charleston, SC.

Meeting: 2016 American Transplant Congress

Abstract number: 1

Keywords: Outcome, Prediction models, Risk factors, Survival

Session Information

Session Name: Joint Plenary Session I

Session Type: Plenary

Date: Sunday, June 12, 2016

Session Time: 8:30am-9:45am

 Presentation Time: 8:30am-8:45am

Location: Veterans Auditorium

Background: Predictive models in kidney transplantation using national data (UNOS, SRTR) lack longitudinal patient level data, limiting accuracy. Adding patient level data capturing dynamic clinical evolution post-tx, may improve predictive accuracy for graft loss (GL) risk.

Methods: In a quality initiative, we built GL risk prediction models, using baseline and follow up data (0- 90-days post-tx; structured & unstructured) on adult solitary kidney transplant recipients transplanted 2007-15. Structured data were directly applied from electronic medical records (EHR,Txp database (Velos) and UNOS.Natural Language Processing (IBM Watson) was applied to unstructured text to extract Banff scores and vitals. We built 4 models: Model 1) UNOS data; Model 2) UNOS & Velos (caregiver) data; Model 3) UNOS, Velos & EHR data (comorbidity); Model 4) UNOS, Velos, EHR & Post-tx trajectory data. We used IBM SPSS Modeler and Essentials for R in analyses. We used Backward Selection at the 20% level to select variables; statistical significance was determined at the 5% level.

Results: We included 890 patients in the GL model, with a 10% 3-yr GL rate. Model 1: KDRI significantly associated with increased 3-year GL (AUC ,0.66 ;95% CI: 0.60, 0.72). Model 2: With addition of Velos data we saw a favorable association on 3-year GL of the patient having a Primary Care Giver at Tx (AUC, 0.68 ;95% CI: 0.61, 0.74). Model 3 EHR data (Cardiac Arrhythmia) added significant positive association with 3-year GL(AUC,0.72;95% CI: 0.66, 0.77). Model 4 : Several post-transplant trajectory variables through year 1 post-tx added to model accuracy: Pulse Pressure Standard Deviation, Hemoglobin Slope (day7-365), Std Deviation of eGFR, Days from Tx to 1st Maximum eGFR, Acute MI, Cardiac or Vascular Events, and 1st year Acute Banff lesion scores (AUC ,0.84, 95% CI: 0.79, 0.89).

Conclusion: A Big Data approach to curating diverse data sources significantly adds accuracy to 3 year graft loss prediction models, capturing complexity and longitudinal evolution across several clinically mutable domains. This solution is executable daily through EHR workflows to optimize outcomes.

CITATION INFORMATION: Srinivas T, Zhang J, Su Z, Taber D, Marsden J, Reilly K, Northrup D, Long J, Lenert L, Moran W, Mauldin P. Three-Year Graft Loss Risk in Kidney Transplants: Dynamic Patient Level Data Improve Predictive Efficacy. Am J Transplant. 2016;16 (suppl 3).

  • Tweet
  • Email
  • Print

To cite this abstract in AMA style:

Srinivas T, Zhang J, Su Z, Taber D, Marsden J, Reilly K, Northrup D, Long J, Lenert L, Moran W, Mauldin P. Three-Year Graft Loss Risk in Kidney Transplants: Dynamic Patient Level Data Improve Predictive Efficacy. [abstract]. Am J Transplant. 2016; 16 (suppl 3). https://atcmeetingabstracts.com/abstract/three-year-graft-loss-risk-in-kidney-transplants-dynamic-patient-level-data-improve-predictive-efficacy/. Accessed May 9, 2025.

« Back to 2016 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences