Live-Time Imaging of Chemotactic Responses in Activated T Cells Demonstrate Novel Exploratory Patterns of Migration towards Chemokines
Division of Nephrology, Boston Children's Hospital, Boston, MA
The BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA
Harvard Medical School, Boston, MA
Meeting: 2013 American Transplant Congress
Abstract number: C1294
Our ability to study characteristic mechanisms and patterns of T cell subset migration during the rejection process is limited by the use of static assay model systems. Also, little is known about live-time patterns of motility that result in recruitment and chemoattraction, as well as patterns that result in chemorepulsion and/or chemoinhibition. Here, we developed a novel microfluidic device that allows for live-time imaging of migrating human T cells and the analysis of directed movement, cell velocity and stop-start motility events of T cells. Human CD3+ T cells were isolated by negative selection from PBMC, and were initially evaluated either unstimulated or following 24hr activation with anti-CD3/anti-CD28 (1mcg/ml). The T cells were introduced into devices and were evaluated while migrating within a maze of 10um channels towards a chemokine gradient, either RANTES or IP-10 (both 100nM), both of which have been well-established in rejection. Patterns of motility within the device (n=14 mazes/device) were observed over 15 hours with time-elapsed video-microscopy, and cells were tracked manually with Image J software (n= 8 devices). We found that unstimulated T cells migrate at high velocity towards IP-10 (147.2 um/hr, n=96 cells) vs. RANTES (101.8 um/hr, n=201 cells),p<0.001. Mitogen-activated T cells migrated at high velocity towards RANTES (157.4 um/hr, n=227 cells) vs. IP-10 (119.3 um/hr, n=203 cells), p<0.001. Also, activated T cells migrated at a slower average velocity towards IP-10 vs. unstimulated cells (p<0.001). Importantly, whereas unstimulated T cells exhibit directed migration towards each chemokine, mitogen-activated T cells were found to exhibit extensive exploration within the device maze (movement in both x and y axes) vs. unstimulated cells (p<0.001) in response to both chemokines. In conclusion, using novel microfluidic technology, we find that activated T cells migrate in an exploratory pattern vs. unstimulated T cells. This difference in migratory pattern implies that targeting patterns of migration in activated T cells will have high potential as novel therapeutics following transplantation.
To cite this abstract in AMA style:
Jain N, Wong I, Wong E, Boneschansker L, Aranyosi A, Briscoe D, Irimia D. Live-Time Imaging of Chemotactic Responses in Activated T Cells Demonstrate Novel Exploratory Patterns of Migration towards Chemokines [abstract]. Am J Transplant. 2013; 13 (suppl 5). https://atcmeetingabstracts.com/abstract/live-time-imaging-of-chemotactic-responses-in-activated-t-cells-demonstrate-novel-exploratory-patterns-of-migration-towards-chemokines/. Accessed January 18, 2025.« Back to 2013 American Transplant Congress