ATC Abstracts

American Transplant Congress abstracts

  • Home
  • Meetings Archive
    • 2022 American Transplant Congress
    • 2021 American Transplant Congress
    • 2020 American Transplant Congress
    • 2019 American Transplant Congress
    • 2018 American Transplant Congress
    • 2017 American Transplant Congress
    • 2016 American Transplant Congress
    • 2015 American Transplant Congress
    • 2013 American Transplant Congress
  • Keyword Index
  • Resources
    • 2021 Resources
    • 2016 Resources
      • 2016 Welcome Letter
      • ATC 2016 Program Planning Committees
      • ASTS Council 2015-2016
      • AST Board of Directors 2015-2016
    • 2015 Resources
      • 2015 Welcome Letter
      • ATC 2015 Program Planning Committees
      • ASTS Council 2014-2015
      • AST Board of Directors 2014-2015
      • 2015 Conference Schedule
  • Search

A Machine-Learning Approach for Estimating Likelihood of Transplant Benefit from Older-Donor Kidneys

T. Pruett1, P. Martin2, D. Gupta3

1University of Minnesota, Minneapolis, MN, 2University of Texas, Austin, TX, 3McCombs School of Business, University of Texas, Austin, TX

Meeting: 2020 American Transplant Congress

Abstract number: 443

Keywords: Donors, marginal, Outcome, Prediction models, Resource utilization

Session Information

Session Name: Kidney Deceased Donor Selection III

Session Type: Oral Abstract Session

Date: Saturday, May 30, 2020

Session Time: 3:15pm-4:45pm

 Presentation Time: 3:27pm-3:39pm

Location: Virtual

*Purpose: There is a shortage of transplantable kidneys in the US. Yet, the discard rate among older donors (55+) is approx. 38% per year. The longterm graft function is predicted by the 1 yr estimated glomerular filtration rate (eGFR). KDPI, the current measure of kidney quality, does not consider recipient characteristics. A tool to assess transplant outcomes accounting for the specific traits of donor and recipient could prove beneficial information. Using 1 yr eGFR goals predicting function described by Kasiske (AJKD 57:466 2011) we developed a personalized score, called Transplant Risk and Benefit (TRB) score for donor-recipient pairs. The hypothesis is that there is significant potential for transplant benefit in kidneys not currently used.

*Methods: We used the 2000-2017 National UNOS STAR file dataset, containing information on donors, waitlisted patients, transplants and follow-ups. Outcomes of adult recipients of older-donor kidneys were analyzed. 23,045 transplants and 603 variables, from which 131 influential variables were extracted was used to calculate likelihood of obtaining certain 1 yr eGFR thresholds.

Using advanced machine-learning methods (e.g. SVM, Random Forest, Neural Networks, Logistic Regression, and Ensemble Methods) a TRB score was developed. This score depends on two thresholds, b and r, which indicates the level of benefit (eGFR) and risk of not realizing that b, respectively. The center and patient can choose the degree of benefit and likelihood of achieving that benefit for each donor kidney. Formally, for each donor i and recipient j

TRBij=Probability(eGFR>b).

For example, if b=45 ml/min and r=0.2, then kidneys would be identified with at least an 80% probability that 1 year eGFR will be above 45. We applied the TRB score to 4,190 older-donor kidneys that were discarded due to “donor characteristics” to determine how many of these could have resulted in sufficiently positive graft outcome.

*Results: Depending on the threshold of 1 yr eGFR desired, significant numbers of waitlisted people could have received benefit from non-used organs.

b (eGFR) 1-r # non-used kidneys with TRB > 1-r KDPI mean, std. dev.
45 0.7 3084 0.91, 0.09
45 0.8 2596 0.90, 0.09
60 0.7 840 0.86, 0.09
60 0.8 440 0.84, 0.1

*Conclusions: The TRB score is able to identify the probability that a donor kidney will provide a predictable level of function in a particular recipient. A tool that provides a personal threshold of transplant benefit and the risk of failure achieve it would allow recipients and centers more ability to assess the right kidney for the right patient. Predictability from machine learning will improve with more data.

  • Tweet
  • Email
  • Print

To cite this abstract in AMA style:

Pruett T, Martin P, Gupta D. A Machine-Learning Approach for Estimating Likelihood of Transplant Benefit from Older-Donor Kidneys [abstract]. Am J Transplant. 2020; 20 (suppl 3). https://atcmeetingabstracts.com/abstract/a-machine-learning-approach-for-estimating-likelihood-of-transplant-benefit-from-older-donor-kidneys/. Accessed May 11, 2025.

« Back to 2020 American Transplant Congress

Visit Our Partner Sites

American Transplant Congress (ATC)

Visit the official site for the American Transplant Congress »

American Journal of Transplantation

The official publication for the American Society of Transplantation (AST) and the American Society of Transplant Surgeons (ASTS) »

American Society of Transplantation (AST)

An organization of more than 3000 professionals dedicated to advancing the field of transplantation. »

American Society of Transplant Surgeons (ASTS)

The society represents approximately 1,800 professionals dedicated to excellence in transplantation surgery. »

Copyright © 2013-2025 by American Society of Transplantation and the American Society of Transplant Surgeons. All rights reserved.

Privacy Policy | Terms of Use | Cookie Preferences